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Abstract 

Paired comparison based scaling method such as the method 
of paired comparison and the method of ranking, etc, are 
often used for subjective image quality measurement. The 
scaled values obtained are often used to predict customer 
preferences and are used for modeling purposes. Knowing 
the repeatability of these measurements is therefore 
important. This paper shows that the theoretical 
repeatability of paired comparison based subjective 
measurement can be simulated numerically. Also, in this 
paper, paired comparison based image quality measurement 
or scaling data are used to examine the potential 
repeatability of these measurements by sub-sampling the 
measured observer pool. In practice, it is strongly desirable 
to have as small a number of observers as possible. This 
type of analysis can help to reveal the potential risk when a 
small number of observers are used. 

Introduction 

Psychophysical scaling is often referred to as “mind 
measuring”. However, the use of the word “measuring” has 
been criticized by physicists since the beginning of the 
subject, because data obtained by psychophysical scaling 
generally do not possess properties of their physical 
counterparts. Nonetheless, psychophysical scaling has been 
used successfully to provide useful information for the 
understanding of senses and the mind. In modern industrial 
production, psychophysical scaling has been constantly 
resorted for evaluating the quality aspect of a visual 
product, such as a reproduced digital image. 1  

Paired comparison based scaling methods have been 
widely used in image quality evaluation. These methods are 
based on the L. L. Thurstone’s law of comparative 
judgment.2,3 (To simplify the problem and follow the general 
trend in practice, we assume Thurstone’s case V conditions 
in this paper unless specified otherwise.) Thurstone 
advanced psychophysics after Fechner’s days. Fechner 
founded psychophysics but was obsessed in finding the 
direct one to one relationship between response and 
stimulus.4 Thurstone hypothesized each stimulus produces 
subjective response value describable by random variables 
normally distributed on the sensory continuum. Given 
paired wise proportions of choice data, scaled values can be 

derived based on an appropriate level of Thurstone’s 
modeling. The underpinning of the law of comparative 
judgment is the random distribution of the subjective 
response to the stimulus. Derived scaled values are therefore 
of merely statistical meanings. According to Bock and 
Jones, Thurstone’s research involved data of large sampling 
sizes, therefore “there is little evidence of interest in the 
statistical bases of the methods”. 5 When moderate sampling 
size is involved, which is much likely in image quality 
evaluation, statistical stability of the results can be 
problematic.  

In imaging quality evaluation, the derived scaled values 
are often used in much the same way as their physical 
counterparts. Scale precision and measurement repeatability 
become important. Thurstone did not provide a method to 
evaluate the uncertainty of derived scaled values, he merely 
proposed the use of the average error of prediction on 
proportion of choice values. When the average error of 
prediction is small, the modeling would be regarded as a 
success. Because measurement data were transformed into z 
score and the final scaled values were optimized regression 
to all proportion of choice data (through z score) for the 
specific model, estimation on scaled value error become 
complicated.  

In physical quantity measurement, it is important to 
know the measurement capability of a measurement 
method. Such capability is often represented by 
measurement precision and accuracy. Because the scaled 
values interested here are only of relative meaning (on the 
so-called ratio scale), accuracy is irrelevant here. On the 
other hand, the precision of the scaled values is important. 
Knowledge on the variance of the scaled values will reveal 
the validity of the data. In practice, variance is often related 
to a more fundamental measurement parameter, the 
measurement repeatability. For physical measurements, 
measurement repeatability can be obtained simply by 
repeating the measurement. In psychophysical scaling 
measurement, to repeat a certain scaling test is often 
remarkably prohibiting due to cost and time. Therefore, 
repeatability information is often given by estimating the 
95% confidence intervals based on the estimated standard 
error of the scaled values. 

Given n as the number of stimuli and N as the number 
of observers, Braun, Fairchild, and Alessi used  
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as the estimate of standard error of the scaled values.6 
Morovic used  

 N2
1=σ        (2) 

as the standard error estimate of his scaled values.7 Because 
the variances are related to both the number of stimuli and 
the number of observers, Morovic’s method therefore may 
overestimate the variance. According to Braun et. al.’s 
method, the number of stimuli will have the same effect on 
variance as the number of observers, which is unlikely 
given the way paired comparison data are obtained and 
modeled. Bock proposed the use a three-component scaled 
value model (true scaled value, individual difference, 
experimental noise) to analyze the variance in Thurstone’s 
case V, and he suggested a formula to estimate the standard 
error of the scaled values, 
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based on statistical inference and some statistical 
assumptions.8 His goal was to explain the often too small χ2 
values produced by Mosteller’s method.9 The coefficient ρ 
is used to account for correlation between choices made on 
two comparisons of a common stimulus or the replication 
effect of a specific stimulus. The value of ρ was proven to 
be between 0 and 1/3. In the simplest case, ρ can be set to 0, 
corresponding to the case of no replication effect, the 
standard error is given by 

 nN
2=σ       (4)  

When ρ takes the largest value of 1/3, the standard error is 
given by 

 Nn
n 11

3
2 +=σ      (5) 

In the case of no replication effect, Bock’s formula also 
implies that the number of stimuli and the number of 
observations have the same effect on variance. On the other 
hand, if the replication effect cannot be discounted, the 
number of stimuli effect reduces to n

n 1+  . When n becomes 
large, the number of stimuli will have little effect on 
variance. Bock’s interesting evaluation deserves further 
verification.  

There are alternative models to treat paired comparison 
data. The most well known model is the Bradley and Terry 
model.10 Lately, Zhou and Cui proposed a maximum 
likelihood format of Thurstone’s model.11 Both these models 
are solvable through generalized linear methods that are 
often readily available in statistical and math software 
packages. These numerical methods normally provide 
variance information on the scaled values. Scaled value 

variance obtained in such a fashion reflects the tolerance of 
the fit to the proportion of choice data. Whether variance 
obtained in this way is equivalent to the true scaled value 
variance propagated from variance on measured proportions 
of choice is not clear. Further, for small numbers of 
observers as often desirable and used in industrial image 
quality evaluation, statistical inference can become 
unreliable. Because all models that were used for paired 
comparison based scaling essentially deal with the same 
information, the relative variance should all reflect the 
uncertainty of the scaled values that are derived from the 
original paired comparison data.  

In this paper, we attempt to investigate the variance of 
the scaled values based on the Thurstone model by 
computer simulation. In reality, procedural and test 
condition errors can also give problems that can even 
invalidate some fundamental modeling assumptions. We 
further use a set of actual measurement data to examine 
measurement repeatability in hope to gain more insight into 
the capability of the paired comparison based scaling 
methods for practical image quality assessment. 

Standard Error Estimation By Simulation 

Given two physically identical images, when they are 
compared against each other in a paired comparison test, the 
chances of which one being chosen over the other shall be 
50%. That is true only on the condition of a relative large 
number of observers. When the number of observers is 
small, say if only ten observers participated, if two 
observers chose one over the other while eight observers 
chose the opposite, the outcome can be perfectly normal, 
similar to the case when we toss a coin ten times. The 
outcome of this process follows the binomial distribution. 
For a set of assumed scaled values, each representing a 
stimulus or a sample image, when pair compared, the 
probability of one being chosen over the other for a specific 
pair combination can be computed. If all the probability 
values of all possible pairs are used to compute scaled 
values, we shall get back to the same scaled values because 
the process should be mathematically invertible. The key 
step of the simulation is to introduce random experimental 
proportion of choice errors. Given a probability value, the 
sampling size, and the number of trials, potential outcomes 
can be simulated with a random number generator. With 
these potential “ noise added”  probability or proportion of 
choice value, we can compute the scaled values. These 
scaled values will be slightly different from the originally 
assumed scaled values. Repetition of the simulation process 
for sufficient times should provide the variances of the 
scaled values. The flowchart for the simulation is given in 
Fig. 1. For further details, see Reference 12.  

Because conversion of the proportion of choice to z 
score (normal deviate) becomes numerically unstable when 
it approaches 0% or 100%, simulated proportion of choice 
values close to 0% or 100% produce large z score 
fluctuation, which causes large scaled value errors. 
Therefore, the simulation is sensitive to the scaled value 
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range assumed. Using the case of 5 stimuli and 50 observers 
as example, Fig. 2 shows the dependency of standard error 
by simulation on the range of scaled values. 
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Figure 1. Simulation flowchart. 
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Figure 2. Dependency of the standard error on range of the scaled 
values assumed for the case of n=5 and N=50. 

If a maximum scaled value range of 3 is used, it 
corresponds to a highest proportion of choice value of 
99.9%. The simulated variances can be considered as 
assuming the worst-case scenario. For example, for three 
reproduced images, one of the images is clearly separable 
from the other two on a statistical level as high as 99.9%. 
The simulated standard errors for such a stimulus range can 
be fitted by, 

n

n

nN
Nn

1

)1(

85.1
),(
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again, n is the number of stimuli and N is the number of 
observers. For a more realistic scaled value range, the 
simulation was also done for a maximum scaled value of 2 
when the number of stimuli is equal or higher than 5; when 
the stimuli number is less than 5, the maximum scaled value 
was determined by 0.5 multiplied by the number of stimuli. 
A scaled value difference of 2 corresponds to a highest 
proportion of choice value of 97.7%. The simulated 
standard errors for such a scaled value range is shown in 
Fig. 3. 
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Figure 3. Simulated standard errors for various combinations of 
number of stimuli and number of observers, and the corresponding 
fits. 

 
Again, the standard errors can be fitted by 
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which is also shown in Fig. 3.  
The result can be compared with those published. Fig. 4 

shows the standard error as a function of N when n=5. Fig. 
5 shows the standard error as a function of n when N=30. 

Examination of Measurement Data 
The above simulation assumes only random sampling 

errors. Still, it reveals that when the number of observers 
and the number of stimuli are small, scaled values based on 
paired comparison modeling can have large errors. In 
practice, there is often an array of other potential test error 
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sources, typical when surveying human subjects, will 
further worsen the scale precision. It is difficult, if not 
impossible, to narrow down and to quantify all these errors. 
Because the law of comparative judgment assumes 
“ constant”  inherent discriminal dispersions, the scaled 
values will be relative to the discriminal dispersions. In 
reality, the discriminal process may not have a stable 
distribution due to some of these unaccounted errors. For 
example, the outcome of the comparison of a pair of color 
image samples may change due to emotional changes within 
a single individual; we therefore may not have a stable 
discriminal dispersion distribution. Consequently, any 
modeling will likely to fail. Errors of such nature cannot be 
simulated easily. Here we will examine a real set of paired 
comparison data in hope to gain some insight of the derived 
scale precision or the repeatability of such methods when 
used for image quality assessment. 
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Figure 4. Comparison of estimated standard errors as a function 
of the number of observers for a set of five stimuli. 
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Figure 5. Comparison of estimated standard errors on scaled 
values as a function of number of stimuli with thirty observers. 

 
The data used here are test results on printed image 

color quality. Three images (“ people” , “ places” , and 
“ things” ) were printed using five different color mapping 
algorithms. Seventy-eight observers participated in the 
paired comparison test. A comparison table was obtained on 

each observer for each image. In total, 78 tables were 
obtained for each image. Details on the test can be found in 
Reference 13. Scaled values can be computed based on 
these data following a specific paired comparison model, 
variance on the scaled values due to random sampling error 
can be simulated following the simulation method given 
above.12 Alternatively, the standard error can be estimated 
by Equation 7.  

Because the test goal was to evaluate the color 
algorithm preference, it can be expected that there might be 
age, gender, and even cultural differences in color 
reproduction preference. We will assume that the data are 
representative of a certain population and sub-sample the 78 
observers to examine the scaled values computed based on 
the smaller samples.  

The paired comparison data for each image was stored 
in 78 copies of paired comparison tally table, one for each 
observer. The software used to calculate the scaled values 
could be fed as many copies of the tally table as desired. For 
a specific sub-sampling size, e.g. a size of 10, the software 
was modified to randomly take 10 tally tables out of 78 to 
re-compute the scaled values, simulating that the test was 
done with the 10 of the 78 observers. Such random 
sampling was repeated for 300 times and a distribution of 
the scaled values were obtained. The scaled value 
distribution for the sub-sampling size of 10, 20, and 30 for 
the “ people”  image is shown in Fig. 6, 7, and 8, 
respectively. 

The sub-sampling was done for the other two images. 
Table 1 shows the average standard deviation for each sub-
sampling size and image combination.  

Table 1. Average standard deviations of the scaled 
values calculated based on sub-sampling the 78 
observers. 

Sub-
sample 

Size 

 
People 

 
Places 

 
Things 

 
Eq. 7 

10 0.35 0.33 0.37 0.32 
20 0.26 0.22 0.25 0.24 
30 0.19 0.17 0.19 0.20 
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Figure 6. Distributions of scaled values calculated based on a 
sub-sampling size of 10 out of the 78 observers for the “people” 
image. 
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Figure 7. Distributions of scaled values calculated based on a 
sub-sampling size of 20 out of the 78 observers for the “people” 
image. 
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Figure 8. Distributions of scaled values calculated based on a 
sub-sampling size of 30 out of the 78 observers for the “people” 
image. 

 
 

Discussion 
 
The computer simulation provides an effective method for 
estimating the measurement errors of paired comparison 
based scaling methods. Fig. 4 and 5 prove that some often-
used methods for estimating scaled value variance 
sometimes tend to under-estimate the errors. The errors of 
scaled values depend on the maximum scaled value 
difference because the large z fluctuation at the two extreme 
proportion of choices regions. For a reasonable maximum 
scaled value difference of 2, Eq. 7 can provide a good 
representation of the standard error for a certain number of 
observer and a certain number of stimuli.  

Figure 6 shows the dramatic variation on the scaled 
values caused by using different groups of observers 10 at a 
time with real test data. The variation magnitude shown are 
consistent with that predicted by the simulation although the 
variation distribution can hardly be regarded as “ normal” . 
As can be expected, the variations become smaller with 

lager sub-sampling sizes as shown in Fig. 7 and 8. The 
standard errors calculated with Eq. 7 are also included in 
Table 1. Because the sub-sampling was done to 78 
observers, the degree of freedom drops when the sub-
sampling size approaches 78. When the sub-sampling size is 
78, there will be no variance for the sub-sampling. That is to 
say, the sub-sampling exhausts the “ entire”  population ( all 
78 observers). Therefore, the standard errors obtained by 
sub-sampling shown as shown in Table 1 under-estimate the 
true scaled value errors if we consider the population of 
interest. The true scaled value errors should also include the 
sampling error originated by using only 78 observers to 
represent the interested population. Nonetheless, the 
example here shows, with real measurement data, the large 
potential risk of using a small number of observers. 

Table 1 also shows that, at least for this set of data, 
image content did not seem to show large effect on errors 
although it might be that these color correction algorithms 
were already balanced and optimized for all three types of 
images. 

Summary 

Variances or errors on scales derived by paired comparison 
based scaling methods were numerically simulated. The 
simulation results reveal the potential large errors when a 
small number of observers and a small number of stimuli 
are used. An error estimation equation was given based on 
the simulation results for a reasonable scaled value range. 
The equation can be used to help to determine the number 
of observers for designing paired comparison based scaling 
experiment. The results here also show that some methods 
used might have underestimated scale values erros. 
Examination with real image quality paired comparison data 
gave consistent results with the simulation and further 
shows the potential large errors when a small number of 
observers are used.  
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